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Bohr billiard: Decay in the chaotic Hamiltonian system with two integrals of motion

P. V. Elyutin* and B. V. Pavlov-Verevkin
Department of Physics, Moscow State University, Moscow 119899, Russia
~Received 12 July 1996; revised manuscript received 13 November 1996!

The two-dimensional system of two identical hard disks moving freely within the circular potential well
~billiard! of finite depth is studied as an example of the Hamiltonian chaotic system with two integrals of
motion—the total energy and the total angular momentum. The kinetics of decay in the ensemble of such
systems with fixed values of integrals of motion can be described by the exponential law, if the energy is lower
than the threshold of two-particle decay. For this range the rate of the decay is calculated analytically as a
function of energy, angular momentum, and the ratio of disk and billiard radii. The numerical calculations
confirm the theoretical estimate of the decay rate in the wide range of its values.@S1063-651X~97!12810-0#

PACS number~s!: 05.45.1b, 34.10.1x
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I. INTRODUCTION

In this paper we investigate the Hamiltonian chaotic s
tem of two particles in an external potential, which can
treated as a round billiard with two hard disks moving free
within it.

Similar models were introduced repeatedly but they ne
have been thoroughly investigated. To explain the fast n
tron capture by some nuclei, Bohr in 1936 introduced
model of hard spheres moving in a two-dimensional pot
tial well @1,2#; see Fig. 1. Bohr has qualitatively analyzed t
dynamics of the system in the case when one fast sp
enters into the well that confines some large number
spheres. The energy redistribution between the sph
makes the time of decay of the system much larger than
time of free passage of the incoming sphere through the w
The model served to illustrate the process under consi
ation. Since quantum effects are crucial for a realistic
scription of nuclei, the quantitative analysis of the classi
model, which we shall callthe Bohr billiard, has not been
attempted.

The second avatar of the model was related to the erg
theory. In this context Sinai has investigated some mod
similar to the Bohr billiard. In 1963 he proved the ergodic
of motion for the Sinai billiard@3,4#, consisting of a particle
moving freely in a plane within the domain of a certain form
shown in Fig. 2, bordered by rigid walls. This discovery h
been developed into the theory of one-particle chaotic
liards, which now plays an important role in chaotic dyna
ics @5–9#. Some attempts to extend the main results for m
complicated system have been carried out@10#, but in gen-
eral many-particle models have received no attention ag

Our model of the Bohr billiard can serve different pu
poses. First, it has four degrees of freedom with unamb
ously and exactly defined energies. The process of accu
lation of energy in one degree of freedom, which tur
eventually into the channel of decay, is important in t
theory of unimolecular reactions@11#. The Bohr billiard ac-
counts for strong repulsion of particles at small distanc
This type of interaction is inherent, for example, to mod
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of rare-gas clusters with Lenard-Jones potential of pairw
interaction. Usually the process of decay of clusters is
scribed by Rice-Ramsperger-Kassel~RRK! theory @12#. The
complementary approach can be provided by the Bohr
liard model and its generalization to three dimensions an
larger number of particles.

Secondly, the model has two integrals of motion—the
tal energy and the component of the total angular momen
orthogonal to the billiard plane~in what follows for brevity it
will be called the angular momentum!. Hence, the motion is
not ergodic on the energy surface, and the question of st
ture of invariant manifolds of the system’s phase spa
arises.

Thirdly, high energy states of the Bohr billiard can b
studied in the paradigm of the theory of irregular scatter
@13–17#. The model allows one to study the problems
irregular scattering of particles on targets with internal d
grees of freedom. These problems, which form the next le
in comparison with the problems of potential irregular sc
tering, are of great interest for the theory of chemical re
tions and have been approached recently@16,17#.

In this paper special attention is given to Bohr’s origin
problem of the kinetics of the decay of a system in hi
energy states, for which the escape of particles to infinity
possible. The stationary distributions of values of some
namical variables are found for the bound states. They
used as tools for studying the problem of decay. The cha
teristics of chaotic motion in the bound states were stud
only to the extent that gave sufficient support to main a
proximations used in the theory of decay.

The remainder of the paper is organized as follows. T
model and its characteristic parameters are described in

FIG. 1. The Bohr billiard.
5044 © 1997 The American Physical Society
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56 5045BOHR BILLIARD: DECAY IN THE CHAOTIC . . .
II. The properties of the bound states of the system—
distributions of dynamical variables and their correlati
functions—are studied in Sec. III. In Sec. IV we derive t
theoretical estimate of the dependence of the decay rat
highly excited states of the Bohr billiard on the energy a
the angular momentum of the system and its geometry.
numerical studies of the decay are described in Sec. V. S
tion VI presents the comparison of the theoretical and
merical results and the general discussion.

II. THE MODEL

The Bohr billiard can be defined as a two-particle syst
in the external field with the Hamiltonian function

H5(
i 51

2 F pi
2

2m
1U~r i !G1V~r 12!. ~1!

Here r i and pi are two-dimensional vectors of position an
momentum of thei th particle, m is the particle mass,r 12
5ur12r2u. The particle interaction is described by the ha
disk repulsion potential

V~r 12!5` ~r 12,2a!, V~r 12!50 ~r 12.2a!, ~2!

where a is the disk radius~see Fig. 3!. The external field
potentialU(r i) is given by the circular potential well of finite
depth,

U~r i !50 ~r i,A2a!, U~r i !5U0 ~r i.A2a!,
~3!

whereA is the billiard radius. The circler i5A2a will be
called the billiard wall. The geometry of the system can
characterized by the dimensionless parametera5a/(A
2a), which has values in the range 0,a,1.

The total energyE and the total angular momentum

L5U(
i 51

2

@r i3pi #U ~4!

are the integrals of motion of the system. For a given va
of E values ofL cannot exceed the limit

L152~A2a!AmE. ~5!

FIG. 2. The Sinai billiard is a part of plane limited by sides
the square~with lengtha! and a concentric circle~with radiusR!.
The particle moves freely within the billiard and reflects elastica
from its wall: the dashed line shows a part of a trajectory. For a
finite value ofR/a the motion of the particle is ergodic.
e
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d
e
c-
-

e

e

The mechanical state of the system can be characterize
two dimensionless parameters:

u5
U0

E
, L5

L

L1
. ~6!

The system is in a bound states ifu.1 or if u,1 andL
.A12u; then the particles are located within the billiard f
all moments of time. Ifu,1 andL,A12u, the system is in
a decay state: one or two particles can leave the billiard
escape to infinity. The valueLb51/&50.707 is an impor-
tant threshold: forL.Lb both particles have angular mo
menta of the same sign.

In what follows valuesm, A2a, and 2E will be used as
units of mass, length, and energy, respectively. The mech
cal states of the system will be described by the followi
eight dynamical variables: the absolute value of moment
of the i th particlepi , its angular momentuml i , polar angle
of its positionw i , and the angle between the polar radius a
the momentum directionu i ~everywherei 51,2!. It should be
noted that the polar radii of particles are not included in t
set.

The energy and angular momentum conservation la
now can be expressed in the form

p1
21p2

2512Nu, l 11 l 25L, ~7!

whereN is the number of particles outside the billiard. Equ
tion ~7! defines the six-dimensional surfaceS in the eight-
dimensional phase space of the Bohr billiard.

If we usep1 ,l 1 ,w1,2,u1,2 as independent coordinates o
the surfaceS, thenp2 and l 2 are determined by the Eq.~7!
with N50. The measuredM of the elementary part of the
surfaceS is written as

dM5
J

A12F2
dp1dl1du1du2dw1dw2 , ~8!

whereJ is Jacobi determinant

J5
D~xi ,yi ,pxi ,pyi ; i 51,2!

D~pi ,l i ,u i ;w i ; i 51,2!
5

2l 1l 2

p1p2sin2u1sin2u2
~9!

y

FIG. 3. The Bohr billiard. The disks move freely within th
circular potential well of the finite depth, colliding elastically wit
the wall and with each other. The total energy and the total ang
momentum of the system are conserved quantities.
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5046 56P. V. ELYUTIN AND B. V. PAVLOV-VEREVKIN
and the geometric factor (12F2)21/2 accounts for the rela
tive directions of the normal to the surfaceS and the gradient
of independent coordinates:

F25(
j 51

6

~n•ej !
2, ~10!

where n is the six-dimensional unit vector of the extern
normal toS, andej is the unit vector in the direction of th
gradient of thej th coordinate.

III. THE BOUND STATES

The law of motion of the particles in the bound stat
depends on the initial conditions~and, consequently, on th
value of the energyE!, but not on the value of the well dept
U0 . Hence, the forms of distributions and correlation fun
tions of dynamical variables depend onL, but not onu.

For calculation of the distribution functions of dynamic
variables in the bound states we shall use the following
pothesis.

Hypothesis:For a given value ofL the probability to find
the system in any part of the surfaceS is determined by the
measure of this part only. This hypothesis comprises th
statements.~a! The chaotic component on the surfaceS is
unique; ~b! the measure of regular invariant manifolds
equal to zero;~c! the measure of the chaotic component
equal to the measure of the whole surfaceS.

To check the assumptions~a! and ~b! we usedw-u maps.
The consequent points$wn ,un%, wherewn and un are the
generalized coordinates~see Sec. II! of a chosen particle
taken at the moment of itsnth collision with the billiard wall,
were displayed on the two-dimensional plot. At any value
L the maps, plotted over 102 trajectories, were evenly sca
tered with points without any traces of stability island
which supports statement~b!. The maps, plotted over th
only trajectory, looked analogically—the whole maps we
scattered evenly—which supports statement~a!.

The assumption~c! is an approximation that is asymptot
cally exact in the limita→0, if ~a! and~b! hold. The repul-
sion of particles makes some parts of the surfaceS inacces-
sible for the system. The measurem of these parts is smal
together with the parametera: if L!1, thenm;a2; if L→1,
then m;a. The hypothesis~c!, by neglecting these parts
implies that ifW(z) is the distribution function of a dynami
cal variablez, thenW(z)dz is the measure of the part of th
surfaceS that corresponds to values of this dynamical va
able in the interval betweenz and z1dz. In order to find
W(z) we have to integrate the Dirac delta functiond(z2z8)
over the induced measuredM, given by Eq.~8!.

As an example we present the distribution functionW( l )
of the angular momentuml of one of the particles for state
with given values ofL. It is defined by the equality

W~ l !5
1

V~L !
E

S
d~ l 2 l 1!

J

A12F2
dl1dp1du1du2dw1dw2 ,

~11!

whereV(L) is the volume of the surfaceS:
-

-

e

f

,

-

V~L !5E
S

J

A12F2
dl1dp1du1du2dw1dw2 . ~12!

The sixfold integrals in Eqs.~11! and~12! can be calculated
analytically. Thus we obtain

W~ l !5
8&p3

V~L !
@12u l uA224~L2 l !22uL2 l uA224l 2#

~13!

and

V~L !5
8&p3

3
$~412L2!A12L226L arccosL

1Q~122L2!@6L arccos~L& !

22~11L2!A224L2#%, ~14!

whereQ(x) is the Heaviside~unit step! function.
The theoretical distributionsW( l ) for different values of

L are shown in Fig. 4 along with the histograms found in t
numerical experiment. For each value ofL the experimental
data were taken from ten trajectories with 23103 particle
collisions in each. The agreement between theoretical
experimental distributions supports the hypothesis.

The important information about the dynamics of the s
tem can be extracted from the autocorrelation functions
dynamical variables,

Bz~t!5^z~ t1t!z~ t !&2^z~ t !&2, ~15!

wherez(t) is the value of the variablez at the momentt and
the angular brackets denote the averaging over the surfacS.

The autocorrelation functions of three variables related
the first particle, namely, its Cartesian coordinate

x15
l 1cosw1

p1sinu1
, ~16!

FIG. 4. The distributionsW( l ) of the angular momentum of on
of the particles for different values of scaled total angular mom
tum L. Continuous lines show the theoretical distributions given
Eq. ~13! for values ofL: ~a! 0; ~b! 0.2; ~c! 0.5; ~d! 0.9. The histo-
grams show the numerically found distributions fora50.3 ~b! and
a50.1 ~c!.
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56 5047BOHR BILLIARD: DECAY IN THE CHAOTIC . . .
its angular momentuml 1 , and the quantity

«15p1
222l 1

2, ~17!

which plays the important role in the theory of decay sta
~see Sec. IV!, were calculated numerically for different va
ues ofL. The ensemble has been formed over 102 trajecto-
ries with length of 1.53103 units of time each. The typica
forms of autocorrelation functions are shown in Fig. 5.

These forms are too complicated to be exhaustively
scribed by a single parameter. However, we can use the
ponential envelope

Bz
0~t!5Bz~0!expS 2

t

qz
D ~18!

to estimate the correlation timeqz of the dynamical variable
z. Typically the autocorrelation function has the form
dumping oscillations. In this case we findqz and its standard
deviation from the best fit of dependence~18! to maxima of
absolute values of the autocorrelation functionuBz(t)u in the
range 0,t,3qz . This scheme has been used in Ref.@18#.
If Bz(t) decreases monotonically, the formula~18! is used to
fit the autocorrelation function itself. The resulting values
qz with their uncertainties are given in the Table I. They a
compared to characteristic times of interparticle collisions
the arithmetic meantp5^Dtc& and the harmonic meantp8
5^Dtc

21&21 of the intervals of timeDtc between two conse
quent particles collisions.

FIG. 5. The normalized correlation functionsbz(t)
5Bz(t)/Bz(0) for different dynamic variables of a particle~x, l ,
and «! for L50.3. Each curve has been calculated by averag
over 102 trajectories of time span 1.53103 time units each.

TABLE I. Correlation timesq of dynamical variablesx1 , p1 , l 1

and«15p1
222l 1

2 and mean times of particles collisionstp andtp8 at
different value of scaled angular momentumL for the Bohr biliard
with a50.33.

q\L 0.0 0.3 0.6 0.9

qx 6.760.7 3.660.9 1165 2564
qp 2.860.8 461 1164 2062
q l 761 762 1265 2167
qe 1.460.3 2.560.2 3.760.7 8869
tp 2.0960.01 2.7460.01 6.5060.02 21.3960.04
tp8 0.3360.09 0.260.1 0.1760.07 0.2960.04
s

-
x-

f

The value ofqz for different quantitiesz in the rangeL
,0.5 differs insignificantly and weakly depends onL. For
L→1, on the contrary, the relationq«@qp;q l holds. It can
be explained by the following reasoning: when the total a
gular momentum of the system approaches its maxi
value, both particles move along the billiard wall collidin
almost frontally. Since the masses of the particles are eq
after each collision they interchange their velocities, en
gies, and angular momenta. The energy and the angular
menta of a particle in these ‘‘whispering mode’’ states a
strongly correlated; hence, the change ofe in each collision
turns out to be relatively small, thus leading to longer cor
lation time.

IV. THE DECAY STATES

If the parameters of the mechanical state satisfy the
equalitiesu,1 andL.A12u, then the conservation law
~7! permit the escape of one of the particles to infinity a
the Bohr billiard is in a decay state. If after the partic
collision thei th particle acquires the momentumpi and an-
gular momentuml i such that

« i5pi
222l i

2.u, ~19!

then its first collision with the billiard wall will lead to de
cay.

The process of this ‘‘fast’’ particle having two consec
tive collisions with another has small probability. Letk51 if
one particle collides twice with another without collidin
with the billiard wall in between, andk50 otherwise. The
numerically found value ofk averaged over all particle col
lisions happens to be negligibly small:^k& never exceeds 3
31023 for u.1/2.

The surfaceS for the decay states can be divided in tw
parts: zoneB, which includes states with particles locate
within the billiard, and zoneD, which includes the escap
states with at least one particle located outside the billia
Until the decay occurs, a trajectory does not distinguish fr
one with the same initial conditions but the other~corre-
sponding to the finite motion! value of the potential depth
So, to analyze the dynamics of the Bohr billiard in zoneB,
which coincides with finite state surfaceS, we may use the
finite state measure and the finite state definition of the pr
ability.

If the system stays in zoneB long enough for many par
ticle collisions to occur, then we can assume that the dis
bution of dynamical variables will relax to their equilibrium
forms, which have been found in Sec. III for the bou
states.

Let us consider the system right after the particles’ co
sion. The probabilityw of the decay before the next partic
collision is equal to

w5
1

V~L !
E

C

J

A12F2
dl1dp1du1du2dw1dw2 . ~20!

The integration in Eq.~20! is carried over the domainC, that
is, the conjunction of those domainsBi of the zoneB where
the inequality ~20! is fulfilled for the i th particle. If L

g
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5048 56P. V. ELYUTIN AND B. V. PAVLOV-VEREVKIN
1.A12u or if u.1/2, then the domainsBi do not overlap
and the integral~19! is equal to

w5
2

V~L !
E

Bi

J

A12F2
dl1dp1du1du2dw1dw2 ~21!

because of the symmetry with respect to particles in
change. In this formula five integrations out of six could
carried out analytically. The result has the form

w5
8p2

V~L !
@ I 112Q~12u22L2!I 2#, ~22!

where

I 15E
b

c

~ f 12 f 22 f 3!dl1 , I 25E
b

0

~ f 21 f 4!dl1 ~23!

and

b5 1
2 ~L2A12u2L2!, c5 1

2 ~L1A12u2L2!. ~24!

The functionsf i are given by the following expressions:

f 15
p

2
1arcsin~12g!, ~25!

f 25 l 1A224~L2 l 1!2 Fp

2
1arcsinS 12

122~L2 l 1!2

u12l 1
2 gD G ,

~26!

f 35~L2 l 1!A224l 1
2 Fp

2
1arcsinS 12

2~L2 l 1!2

12u22l 1
2 gD G ,

~27!

f 45 l 1A224~L2 l 1!2

3Fp

2
1arcsinS 12

2l 1
2

12u22~L2 l 1!2 gD G , ~28!

where

g5
2u

122l 1
222~L2 l 1!2 . ~29!

The most stable states correspond to the case when q
tities j512u andh5A12u2L tend to zero. In this casew
vanishes no slower thanj1/2h1/4.

If after the given collision the condition of the decay~19!
is not fulfilled for any particle, then the escape may beco
possible only after the next particle collision. We assu
that the particle collision transfers the system to any stat
S with equal probability. For the states withw!1 this as-
sumption yields the exponential decay law: the probabi
P(t) for the system to stay in zoneB for the timet is

P~ t !5e2gt. ~30!

The decay rateg is given by the ratio of the probability o
decay in a given statew to the average timetp between two
consequent particles collision:
r-

an-

e
e
in

y

g~u,L,a!5
w~u,L !

tp~L,a!
. ~31!

The value oftp can be basically borrowed from the mod
of the hard-sphere gas as the average time of free flight~see,
e.g., Ref.@19#!:

tp'
1

nsv
, ~32!

wheren is the concentration of particles,s is the scattering
cross section, andv is the averaged relative velocity of th
colliding particles. For the Bohr billiard we can take

n5
2

p
, s54a, v51. ~33!

Thus we obtain the estimate

tp5
p

8a
. ~34!

This approximation must be improved by account of t
dependence oftp on L, which is essential in the rangeL
.Lb , where both particles have the components of the
gular momenta of the same sign. It is easy to visualize
limit L→1, when both particles move along the ‘‘whisperin
mode’’ trajectories in the same direction with nearly t
same velocities. Thus we can expect that both concentra
n and relative velocityv appear to beL dependent.

At first we consider the influence ofL on the concentra-
tion n. For L.Lb the particles are located between the b
liard wall and the concentric circle with radiusr
5A2L221. Then for this range ofL we must exclude the
inaccessible areaS85pr2 from the billiard areaS5p.
Thus we obtain the following expression for the concent
tion of particles:

n15
1

p~12L2!
. ~35!

For the extremely large values ofL>A122a12a2, when
r>122a, the motion of particles is essentially one dime
sional in the narrow ring along the billiard wall. In this cas
the concentration is given by the equality

n25
1

2p~a2a2!
. ~36!

Secondly, forL→1 the average relative velocity of th
particles tends to zero asv;A12L2. One can take for the
rangeL.Lb the approximation

v5A222L2. ~37!

This formula has correct asymptotics atL→1 and matches
with the low-L valuev51 at L5Lb .

From Eqs.~32! and ~33! and ~35! and ~37! we finally
obtain the three-piecewise expression for the time of in
particle collisions:
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tp5
p

8a
, L,

1

&
,

tp5
p

4&a
A12L2,

1

&
,L,A122a12a2, ~38!

tp5
p

2&a

12a

A12L2
, A122a12a2,L,1.

These formulas match at the interval borders.

V. NUMERICAL STUDY OF DECAY

For the numerical study of the process of decay in
Bohr billiard the ensemble of initial conditions that is un
form on the surfaceS has been prepared by the followin
procedure. The distribution of the Cartesian components
momenta has been created uniform on the surface of
four-dimensional hyperspherep1

21p2
251, which corresponds

to the states with energyE51/2. To do this we have firs
created with the standard generator of the random num
the uniform momenta distribution within a square of si
equal to 2. Then we have excluded all points out of
required sphere. The last step was the renormalization
momenta to make all the remaining points lie on the surf
p1

21p2
251. The distribution of initial values of Cartesian co

ordinates of particles has been created uniform within
well ~in a way similar to that in the case of momenta!; then
the points withr 12<2a were excluded. From these distribu
tions the subset of initial conditions that correspond to
states with a prescribed value of scaled angular momentuL
within a given error limit (DL5531023) has been selected

For a given set of initial conditions the equations of m
tion were integrated forward and backward in time until t
moments of decay~t1 and t2 , respectively!, when one of
the particles left the well. The sumtd5t11t2 gives the
delay time of the state. The integration has been interrup
if no decay occurred before the cutoff timetc . The usual
value of tc was 104, but in the case of low energy and hig
angular momentum we needed to taketc equal to 53104.
For each set ofu andL the number of trajectories was 104.

Values ofg have been estimated from the decay law~30!
at the moments whenP(t)52/3 and 1/3 for both directions
of time.

Additional values ofg were found from the distribution o
delay times. If the decay can be described by the expone
law ~30! and the times of direct and inverse decayst1 andt2

are independent, then the distribution of delay timestd has
the form

W~ td!5g2tdexp~2gtd!. ~39!

The experimental value ofg was determined from the
best fit of the theoretical distribution~39! to the experimenta
oneWe(td). The minimal value of the deviation

dW~g!5E
0

2tc
We~ td!2We~ td!udtd ~40!
e

of
he

rs

e
of
e

e

e

-

d

ial

gives the estimate of the accuracy of the exponential law
decay. Values ofdW lie usually in the rangedW,0.1. For
large L, when the number of experimental points is sma
the fluctuations of the experimental delay time distributi
raise values ofdW as high as 0.5. Nevertheless, in these ca
the approximation remains acceptable since the theore
curve lies within the standard deviation bands of the his
grams.

The values ofg for given u and L, which are found by
different procedures, can be described by the mean valuḡ
and the standard deviationDg. The relative errordg
5Dg/ḡ does not exceed 1022 for u50.99 and increases to
dg50.2 for u50.67.

VI. DISCUSSION

Above we have presented a theory of the decay proces
the Bohr billiard. It is based on the assumptions of the ex
nentiality of the decay@Eq. ~30!# and uses the stationar
distributions of dynamical variables in the transient ca
This approach is valid for relatively small decay rate, wh
gtp!1. Theoretical dependenceg(u) is shown in Fig. 6 for
different values ofL. The numerically found values ofg are
plotted on the same figure by dots. The error bars are c
parable to the size of a dot for all points but one. The leve
agreement can be considered satisfactory for a theory w
out any adjustable parameters if one takes into account
in the studied domain of parametersg varies over nearly 4
orders of magnitude.

The dependence of decay rate onL is essential even for
small and medium values of total angular momentum:
ratio of rates of the decay taken atL50 andL50.7A12u is
about 10 for all considered values ofu. For the states with
u,1/2 the two-particle decay is possible, and the assump
w!1, crucial for the exponential law, does not hold. Nea
all states in this range decay after a few times of free p
sage; only in the rangeL'A12u can one find trajectories
with many particle collisions.

FIG. 6. The dependence of decay rateg on energy variableu
and the scaled angular momentumL for the Bohr billiard witha
50.3 in a semilogarithmic scale. Continuous lines show the th
retical values given by formula~38! for values ofu: ~a! 0.99; ~b!
0.95; ~c! 0.91; ~d! 0.67. Experimental data are plotted by do
Dashed vertical lines mark the limiting values ofL for the decay
states.
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A novel feature unveiled by the numerical experiment
the presence of the long-living states for which the timest1

or t2 , but not both of them, exceed the cut-off timetc . The
existence of these states leads to the suggestion that th
cay law at larget has the power behaviorP(t);t2v. This
type of decay law is known in the theory of transient cha
@15#. It originates from the presence of the domain of no
decaying states that has finite measure. Sticking of the
jectories in the vicinity of KAM surfaces enclosing this d
main give rise to long-living decay states@20,21#.
Alternatively, these states may indicate the possibility of
capture of incoming particles in the Bohr billiard. The rigo
ous proof of the existence of stable states with finitet2 and
infinite t1 ~or vice versa! could not be given either by nu
merical means or by approximate approaches. We leave
problem for future investigations.

In our studies we have used the ensemble of the in
conditions, in which they are spread uniformly in the zoneB
of the phase surfaceS. This uniform ensemble can be cha
acterized by two parametersu and L; it is convenient for
R

de-

s
-
a-

e

is

l

studying transient chaos. The original Bohr’s problem is co
nected to the ensemble of a different type, the scatte
ensemble. It can be characterized by two paramet
namely, the energiesE1 and E2 of the particles in the in-
state, when the incoming particle 1 is located outside
billiard. The other parameters of the state~the impact param-
eter of the particle 1, the coordinates of the particle 2, and
angle u2! in the scattering ensemble are distributed u
formly. The distribution of the delay times for the scatterin
ensemble differs essentially from that given by Eq.~30!. The
overwhelming contribution in the range of smalltd comes
from the passage trajectories without any interparticle co
sions. The mediumtd range can be described by the appr
priate integration of the distribution~38! weighted with the
distribution ofL in the scattering ensemble.
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