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Bohr billiard: Decay in the chaotic Hamiltonian system with two integrals of motion
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The two-dimensional system of two identical hard disks moving freely within the circular potential well
(billiard) of finite depth is studied as an example of the Hamiltonian chaotic system with two integrals of
motion—the total energy and the total angular momentum. The kinetics of decay in the ensemble of such
systems with fixed values of integrals of motion can be described by the exponential law, if the energy is lower
than the threshold of two-particle decay. For this range the rate of the decay is calculated analytically as a
function of energy, angular momentum, and the ratio of disk and billiard radii. The numerical calculations
confirm the theoretical estimate of the decay rate in the wide range of its vERE¥63-651X97)12810-0

PACS numbd(s): 05.45+b, 34.10+x

[. INTRODUCTION of rare-gas clusters with Lenard-Jones potential of pairwise
interaction. Usually the process of decay of clusters is de-
In this paper we investigate the Hamiltonian chaotic sysscribed by Rice-Ramsperger-Kas$@RK) theory[12]. The
tem of two particles in an external potential, which can becomplementary approach can be provided by the Bohr bil-
treated as a round billiard with two hard disks moving freelyiard model and its generalization to three dimensions and a
TP larger number of particles.
within it. S dly, the model has two integrals of motion—the to-
Similar models were introduced repeatedly but they never econdly, the 9
have been thoroughly investigated. To explain the fast neu-aI energy and the component of the total angular momentum
tron capture by some nuclei, Bohr in 1936 introduced th orthogonal to the billiard plangn what follows for brevity it

= ) : ill be called the angular momentynHence, the motion is
fT‘Ode' of hard sphgres moving In a tvyo—<j_|men3|onal potent ergodic on the energy surface, and the question of struc-
tial well [1,2]; see Fig. 1. Bohr has qualitatively analyzed thetre of invariant manifolds of the system's phase space
dynamics of the system in the case when one fast sphetgises.

enters into the well that confines some large number of Thjrgly, high energy states of the Bohr billiard can be

spheres. The energy redistribution between the spheregdied in the paradigm of the theory of irregular scattering
makes the time of decay of the system much larger than the;3—17. The model allows one to study the problems of

time of free passage of the incoming sphere through the wellrregular scattering of particles on targets with internal de-
The model served to illustrate the process under considegrees of freedom. These problems, which form the next level
ation. Since quantum effects are crucial for a realistic dein comparison with the problems of potential irregular scat-
scription of nuclei, the quantitative analysis of the classicakering, are of great interest for the theory of chemical reac-
model, which we shall calthe Bohr billiard, has not been tions and have been approached receft;17.

attempted. In this paper special attention is given to Bohr’s original

The second avatar of the model was related to the ergodigroblem of the kinetics of the decay of a system in high
theory. In this context Sinai has investigated some modelenergy states, for which the escape of particles to infinity is
similar to the Bohr billiard. In 1963 he proved the ergodicity possible. The stationary distributions of values of some dy-
of motion for the Sinai billiard 3,4], consisting of a particle namical variables are found for the bound states. They are
moving freely in a plane within the domain of a certain form, used as tools for studying the problem of decay. The charac-
shown in Fig. 2, bordered by rigid walls. This discovery hasteristics of chaotic motion in the bound states were studied
been developed into the theory of one-particle chaotic bilonly to the extent that gave sufficient support to main ap-
liards, which now plays an important role in chaotic dynam-proximations used in the theory of decay.
ics[5—9]. Some attempts to extend the main results for more The remainder of the paper is organized as follows. The
complicated system have been carried [di@], but in gen- model and its characteristic parameters are described in Sec.
eral many-particle models have received no attention again.

Our model of the Bohr billiard can serve different pur- Ty
poses. First, it has four degrees of freedom with unambigu-
ously and exactly defined energies. The process of accumu- -
lation of energy in one degree of freedom, which turns '
eventually into the channel of decay, is important in the
theory of unimolecular reactiorjd1]. The Bohr billiard ac-
counts for strong repulsion of particles at small distances.
This type of interaction is inherent, for example, to models

*Electronic address: pve@astra.phys.msu.su FIG. 1. The Bohr billiard.
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FIG. 2. The Sinai billiard is a part of plane limited by sides of
the squargwith lengtha) and a concentric circléwith radiusR). FIG. 3. The Bohr billiard. The disks move freely within the
The particle moves freely within the billiard and reflects elastically circular potential well of the finite depth, colliding elastically with
from its wall: the dashed line shows a part of a trajectory. For an}he wall and with each other. The total energy and the total angular
finite value ofR/a the motion of the particle is ergodic. momentum of the system are conserved quantities.

Il. The properties of the bound states of the system—thdhe mechanical state of the system can be characterized by
distributions of dynamical variables and their correlationtwo dimensionless parameters:

functions—are studied in Sec. lll. In Sec. IV we derive the
theoretical estimate of the dependence of the decay rate of Ug A
highly excited states of the Bohr billiard on the energy and u=g. L= AL ©)

the angular momentum of the system and its geometry. The
numerical studies of the decay are described in Sec. V. Se
tion VI presents the comparison of the theoretical and nu
merical results and the general discussion.

She system is in a bound statesuf1 or if u<1 andL

> \/1—u; then the particles are located within the billiard for
all moments of time. Iu<1 andL<+/1—u, the system s in

a decay state: one or two particles can leave the billiard and
. THE MODEL escape to infinity. The value,=1A2=0.707 is an impor-

The Bohr billiard can be defined as a two-particle systenfant threshold: fo.>L; both particles have angular mo-

in the external field with the Hamiltonian function menta of the same sign.
In what follows valuesn, A—a, and ZE will be used as

units of mass, length, and energy, respectively. The mechani-
+V(rq). (1)  cal states of the system will be described by the following
eight dynamical variables: the absolute value of momentum
of theith particlep;, its angular momenturh, polar angle
of its positione; , and the angle between the polar radius and
the momentum directiofi; (everywhera =1,2). It should be
noted that the polar radii of particles are not included in this
set.
V(rp)=o (r,<2a), V(ri)=0 (r,>2a), (2 The energy and angular momentum conservation laws
now can be expressed in the form

2
Pi
m"'u(ri)

2
H=2,
=1

Herer; andp; are two-dimensional vectors of position and
momentum of theth particle,m is the particle mass;;,
=|r,—r5|. The particle interaction is described by the hard
disk repulsion potential

wherea is the disk radiugsee Fig. 3. The external field
potentialU(r;) is given by the circular potential well of finite pi+p5=1—Nu, I;+I,=L, (7)
depth,
whereN is the number of particles outside the billiard. Equa-
tion (7) defines the six-dimensional surfagein the eight-
) dimensional phase space of the Bohr billiard.
whereA is the billiard radius. The circle;=A—a will be If we usep,,li,¢12,601, a8 indepent_ﬂent coordinates on
called the billiard wall. The geometry of the system can bell€ surfacesS, thenp, andl, are determined by the E¢7)
characterized by the dimensionless parametera/(A  With N=0. The measurelM of the elementary part of the
—a), which has values in the range<v<1. surfaceS is written as
The total energ\e and the total angular momentum

U(r)=0 (ri<A-a), U(r)=Uy (ri>A-a),

3
M= = dp,dl,do,dhdesde,,  (8)

2
2 [riXpi]‘ (4) vi=

: . , whereJ is Jacobi determinant
are the integrals of motion of the system. For a given value

of E values ofA cannot exceed the limit

A:

_ D(Xivyi!pxivpyi;i:]-vz)_ 2|1|2
A, =2(A-a)ymE. (5) C D(pi i, 6 eii=1,2)  pyp,Sinté;sSirte,

(©)
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and the geometric factor (1®?) Y2 accounts for the rela-

. L9 . ar
tive directions of the normal to the surfaand the gradient
of independent coordinates: w (d)
6 3
®2=3 (n-g)? (10) (@ ®
j=1
i 2t
wheren is the six-dimensional unit vector of the external
normal toS, ande; is the unit vector in the direction of the N
gradient of thejth coordinate.
©
Ill. THE BOUND STATES o L
-0.5 o 0.5 0.707

The law of motion of the particles in the bound states
depends on the initial conditionand, consequently, on the FIG. 4. The distribution®V(l) of the angular momentum of one
value of the energ§), but nqt O,n the value of the We_” depth of the particles for different values of scaled total angular momen-
Uo. Hence, the forms of distributions and correlation func-yym . Continuous lines show the theoretical distributions given by
tions of dynamical variables depend bn but not onu. Eq. (13) for values ofL: (8 0; (b) 0.2; (c) 0.5; (d) 0.9. The histo-

I_:0r Cal?ulation of the distribution functions of dynamical grams show the numerically found distributions e+ 0.3 (b) and
variables in the bound states we shall use the following hyx=0.1 (c).

pothesis.

HypothesisFor a given value of the probability to find 3
the system in any part of the surfaBds determined by the V(L):f E—
measure of this part only. This hypothesis comprises three s J1-®?
statements(a) The chaotic component on the surfaSds ) ] )
unique; (b) the measure of regular invariant manifolds is The sixfold integrals in Eq11) and(12) can be calculated
equal to zerojc) the measure of the chaotic component is@nalytically. Thus we obtain
equal to the measure of 'Fhe whole surf&e 8v3 73

To check the assumptiorta) and (b) we usede-6 maps. W(l)=———[1-[1]V2=4(L=1)2—|L—1]|2—4I?]
The consequent pointsp,,6,}, where ¢, and 6, are the V(L)
generalized coordinatesee Sec. )l of a chosen particle (13
taken at the moment of itsth collision with the billiard wall,

dlld pld Hld 02d§01d§02. (12)

were displayed on the two-dimensional plot. At any value ofand
L the maps, plotted over fQrajectories, were evenly scat- 8v3 73
tered with points without any traces of stability islands, V(L)= {(4+2L%)J1-L%-6L arccos
which supports statemerib). The maps, plotted over the 3
only trajectory, looked analogically—the whole maps were +@(1—2L2)[6L arcco$Lv?)
scattered evenly—which supports statem@it
The assumptiofic) is an approximation that is asymptoti- —2(1+L?)+2-4L?]}, (14

cally exact in the limita— 0, if (a) and(b) hold. The repul-

sion of particles makes some parts of the surf@8deacces- Wwhere®(x) is the Heavisidgunit step function.

sible for the system. The measusieof these parts is small The theoretical distributiongV(l) for different values of
together with the parameter if L<1, thenu~ a?; if L—1, L are shown in Fig. 4 along with the histograms found in the
then u~«. The hypothesigc), by neglecting these parts, numerical experiment. For each valuelothe experimental
implies that ifW(z) is the distribution function of a dynami- data were taken from ten trajectories with 20° particle

cal variablez, thenW(z)dz is the measure of the part of the collisions in each. The agreement between theoretical and
surfaceS that corresponds to values of this dynamical vari-experimental distributions supports the hypothesis.

able in the interval betweemn and z+dz. In order to find The important information about the dynamics of the sys-
W(z) we have to integrate the Dirac delta functioz—z’)  tem can be extracted from the autocorrelation functions of
over the induced measudM, given by Eq.(8). dynamical variables,

As an example we present the distribution functitl)
of the angular momenturhof one of the particles for states BA(7)=(z(t+1)z(t))—(z(1))?, (15

with given values ol. It is defined by the equality ) )
wherez(t) is the value of the variable at the moment and

the angular brackets denote the averaging over the susface

1 J The autocorrelation functions of three variables related to
w(h)= V(L) Lé(l —10) J1—®2 dlydp,d6;d0zde,de, the first particle, namely, its Cartesian coordinate
(11 |
co
Xi= 1C0Sp; (16)

whereV(L) is the volume of the surfacs: p1ising;’
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1.0 The value of9, for different quantities in the rangeL

< 0.5 differs insignificantly and weakly depends bn For

L—1, on the contrary, the relatiof,> ¥ ,~ 9, holds. It can

be explained by the following reasoning: when the total an-

A / gular momentum of the system approaches its maximal
P value, both particles move along the billiard wall colliding

almost frontally. Since the masses of the particles are equal,

o —~7 after each collision they interchange their velocities, ener-
X gies, and angular momenta. The energy and the angular mo-
menta of a particle in these “whispering mode” states are
-0.43 3 = 1= strongly correlated; hence, the changeeah each collision
r turns out to be relatively small, thus leading to longer corre-
lation time.

FIG. 5. The normalized correlation functiond,(7)
=B,(7)/B,(0) for different dynamic variables of a particlg, I,

IV. THE DECAY STATES
and ¢) for L=0.3. Each curve has been calculated by averaging

over 1@ trajectories of time span 1510 time units each. If the parameters of the mechanical state satisfy the in-
equalitiesu<1 andL>+/1—u, then the conservation laws
its angular momenturty, and the quantity (7) permit the escape of one of the particles to infinity and
5 5 the Bohr billiard is in a decay state. If after the particle
e1=p1—2l1, 17 collision theith particle acquires the momentupy and an-

which plays the important role in the theory of decay statesqular momentu; such that

(see Sec. Y, were calculated numerically for different val-
ues ofL. The ensemble has been formed ovet fr@jecto-
ries with length of 1.5 10° units of time each. The typical
forms of autocorrelation functions are shown in Fig. 5.
These forms are too complicated to be exhaustively de¢®Y:

scribed by a single parameter. However, we can use the ex- The”pr.ocess.cr:f this r‘]‘fa‘?” particllle havinglltwo cons'(facu-
ponential envelope tive collisions with another has small probability. Let 1 i

one particle collides twice with another without colliding
o T with the billiard wall in between, anéd=0 otherwise. The
BZ(T)=BZ(0)9XF< - 3) (18)  numerically found value ok averaged over all particle col-
z i . .
lisions happens to be negligibly smalk) never exceeds 3

to estimate the correlation tim&, of the dynamical variable <10 * for u>1/2, o

z. Typically the autocorrelation function has the form of  1Nne surfaces for the decay states can be divided in two
dumping oscillations. In this case we fifig and its standard Parts: zoneB, which includes states with particles located
deviation from the best fit of dependen@s) to maxima of ~ Within the billiard, and zone®, which includes the escape
absolute values of the autocorrelation functjga(r)| in the states with at least one par.t|cle located outs[de: the. billiard.
range G< r<3%,. This scheme has been used in Ha8]. Until the decay occur's,_gtrajectc.)r.y does not distinguish from
If B,(7) decreases monotonically, the form@®) is used to  ©N€ With the same initial conditions but the ottieorre-

fit the autocorrelation function itself. The resulting values ofSPONding to the finite motionvalue of the potential depth.

9, with their uncertainties are given in the Table |. They areso’ to analyze the dynamics of the Bohr billiard in zdsie

compared to characteristic times of interparticle collisions—hich coincides with finite state surfa& we may use the

the arithmetic mearr,=(At.) and the harmonic mean, glgli'?gystate measure and the finite state definition of the prob-
=(At_ 1)~ * of the intervals of timeAt, between two conse- . .

uent particles collisions _ If the_system stays in zor® long enough for many par-
q ' ticle collisions to occur, then we can assume that the distri-
bution of dynamical variables will relax to their equilibrium
forms, which have been found in Sec. Il for the bound

gi=pZ—21?>u, (19

then its first collision with the billiard wall will lead to de-

TABLE |. Correlation times9 of dynamical variableg,, p4, I,
ande,= pf— 2If and mean times of particles collisions and 7-", at

different value of scaled angular momentunfor the Bohr biliard states. . . . , .

With a=0.33. Let us consider the system right after the particles’ colli-
sion. The probabilityw of the decay before the next particle

9\L 0.0 0.3 0.6 0.9 collision is equal to

Uy 6.7+0.7 3.6:0.9 11+5 25+4 1 J

9, 2.8+0.8 4+1 11+4 20+2 w= f dl,dp;d6,d6,de de,. (20)

9 7+1 7+2 12+5 2147 V(L) Je J1-9?

Ve 1.4+£0.3 2.5t0.2 3.7+0.7 88t9

Tp 2.09+0.01 2.74-0.01 6.50-0.02 21.39-0.04 The integration in Eq(20) is carried over the domai@, that

! 0.33+0.09 0.2:0.1 0.170.07 0.29-0.04 is, the conjunction of those domais of the zoneB where

the inequality (20) is fulfilled for the ith particle. If L
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1>{1—u or if u>1/2, then the domainB; do not overlap
and the integra(19) is equal to

w dlld pld Hld azd@ld(Pz (21)

2 f J
S V(L) Jg J1— @2

P. V. ELYUTIN AND B. V. PAVLOV-VEREVKIN

w(u,L)

e (31)

y(u,L,a)=

The value ofr, can be basically borrowed from the model
of the hard-sphere gas as the average time of free flagi,
e.g., Ref[19)):

because of the symmetry with respect to particles inter-

change. In this formula five integrations out of six could be 1

carried out analytically. The result has the form

2

:W[IlJrZ(l—u—ZLz)lz]:

w (22

where

Cc 0
= [t 1= [ rgdn @9

and
b=i(L—VI—u-L?), c=i(L+ I-u-L?). (24

The functionsf; are given by the following expressions:

f1=g+arcsir(l—g), (25
1-2(L—1y)?
12— AL T2 | = +arcsi] 1— 2107 |
2 u+213
(26)
(L1727 4 aresid 1 2E=1°
fa=(L—-1y)V2—4I7 2+arcsu‘(1 1—u—2|§g ,
(27)
f4:|1 2_4(L_|1)2

X

T . 212
E-f—al’CSI 1- T—u=2(L=1) gll, (28
where

_ 2u
C1-21f-2(L—17)%

g (29

The most stable states correspond to the case when qu

titiesé=1—u andn=+1—u—L tend to zero. In this case
vanishes no slower thagl’?7%.
If after the given collision the condition of the decéh9)

(32

T~ ——,
P nov

wheren is the concentration of particles, is the scattering
cross section, and is the averaged relative velocity of the
colliding particles. For the Bohr billiard we can take

2
n=—, o=4a, v=1. (33
ar
Thus we obtain the estimate
o
T ga" (34)

This approximation must be improved by account of the
dependence of, on L, which is essential in the rande
>Ly, where both particles have the components of the an-
gular momenta of the same sign. It is easy to visualize the
limit L—1, when both particles move along the “whispering
mode” trajectories in the same direction with nearly the
same velocities. Thus we can expect that both concentration
n and relative velocity appear to bé. dependent.

At first we consider the influence &f on the concentra-
tion n. ForL>L, the particles are located between the bil-
liard wall and the concentric circle with radiup
=./2L?—1. Then for this range of. we must exclude the
inaccessible are&’=mp? from the billiard areas = .
Thus we obtain the following expression for the concentra-
tion of particles:

1

EENG) %

ny

For the extremely large values bf= 1—2a+ 2a?, when
p=1-2a, the motion of particles is essentially one dimen-
sional in the narrow ring along the billiard wall. In this case
atrq_e concentration is given by the equality

1

:27T(a—a2) ' (36)

n;

is not fulfilled for any particle, then the escape may become

possible only after the next particle collision. We assume

Secondly, forL—1 the average relative velocity of the

that the particle collision transfers the system to any state iRarticles tends to zero as~ y1—L*. One can take for the

S with equal probability. For the states with<<1 this as-

sumption yields the exponential decay law: the probability

P(t) for the system to stay in zori for the timet is

P(t)y=e " (30
The decay ratey is given by the ratio of the probability of
decay in a given state to the average time, between two
consequent particles collision:

rangeL>L, the approximation

v=+2-2L% (37

This formula has correct asymptotics lat-1 and matches
with the lowL valuev=1 atL=L,.

From EQgs.(32) and (33) and (35 and (37) we finally
obtain the three-piecewise expression for the time of inter-
particle collisions:
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Tt N :
TP_Q, 5, *lg(J/) (@)
1 3 ® .
T
ro=——J1-L2%, —<L<1-2a+2a% (38 y
P 4via %) 39 y :
25 (d)

o, (C) f
T l-a ““""/
V1-2a+2a’<L<1. e .

Th=— y gy
P 2v2a J1-17 1 R
These formulas match at the interval borders. ‘
1] 0.10 .22 0.30 0.57
V. NUMERICAL STUDY OF DECAY I

For the numerical study of the process of decay in the ,
Bohr billiard the ensemble of initial conditions that is uni-  !G- 6. The dependence of decay rat@n energy variables
form on the surfaces has been prepared by the following 2"d the scaled angular momentuor the Bohr billiard witha
procedure. The distribution of the Cartesian components 0?0.3 in a semilogarithmic scale. Continuous lines show the theo-

. retical values given by formul&38) for values ofu: (a) 0.99; (b)
mome_nta h‘f"s been created un|f20rm on the surface of th&95; (c) 0.91; (d) 0.67. Experimental data are plotted by dots.
four-dimensional hypersphep§+ p3

. =1, Wh!Ch corresponds Dashed vertical lines mark the limiting values loffor the decay
to the states with energé=1/2. To do this we have first i tes

created with the standard generator of the random numbers

the uniform momenta distribution within a square of sizegives the estimate of the accuracy of the exponential law of
equal to 2. Then we have excluded all points out of thedecay. Values ob lie usually in the ranges,<0.1. For
required sphere. The last step was the renormalization dérgeL, when the number of experimental points is small,
momenta to make all the remaining points lie on the surface¢he fluctuations of the experimental delay time distribution
pa+ p3=1. The distribution of initial values of Cartesian co- raise values o6, as high as 0.5. Nevertheless, in these cases
ordinates of particles has been created uniform within théhe approximation remains acceptable since the theoretical
well (in a way similar to that in the case of momentden  curve lies within the standard deviation bands of the histo-
the points withr ,<2« were excluded. From these distribu- grams.

tions the subset of initial conditions that correspond to the The values ofy for givenu andL, which are found by
states with a prescribed value of scaled angular momehtum different procedures, can be described by the mean value
within a given error limit AL=5x10"3) has been selected. and the standard deviatiohy. The relative erroré,

For a given set of initial conditions the equations of mo-=Avy/vy does not exceed 16 for u=0.99 and increases to
tion were integrated forward and backward in time until thes,=0.2 foru=0.67.
moments of decayt, andt_, respectively, when one of
the particles left the well. The sury=t, +t_ gives the VI. DISCUSSION
delay time of the state. The integration has been interrupted
if no decay occurred before the cutoff timg. The usual
value oft, was 10, but in the case of low energy and high
angular momentum we needed to takeequal to 5< 10%.
For each set ofi andL the number of trajectories was“0

Values ofy have been estimated from the decay I30)
at the moments wheR(t) =2/3 and 1/3 for both directions
of time.

Additional values ofy were found from the distribution o
delay times. If the decay can be described by the exponenti
law (30) and the times of direct and inverse decaysandt_
are independent, then the distribution of delay timefas
the form

Above we have presented a theory of the decay process in
the Bohr billiard. It is based on the assumptions of the expo-
nentiality of the decayEq. (30)] and uses the stationary
distributions of dynamical variables in the transient case.
This approach is valid for relatively small decay rate, when
y7,<1. Theoretical dependenggu) is shown in Fig. 6 for
different values oL.. The numerically found values of are
f plotted on the same figure by dots. The error bars are com-
arable to the size of a dot for all points but one. The level of

greement can be considered satisfactory for a theory with-
out any adjustable parameters if one takes into account that
in the studied domain of parameteysvaries over nearly 4
orders of magnitude.
o, The dependence of decay rate loris essential even for
W(tg) = y"ta€Xp — yta). (39 small and medium values of total angular momentum: the
ratio of rates of the decay takenlat0 andL=0.7\1—u is
about 10 for all considered values of For the states with
u<1/2 the two-particle decay is possible, and the assumption
w<1, crucial for the exponential law, does not hold. Nearly
all states in this range decay after a few times of free pas-
2t¢ . . N . . .
S 7)=f Wo(ty) —Wo(ty)|dty (40)  Sage; only in the rang.E.~ y1—u can one find trajectories

0 with many particle collisions.

The experimental value oy was determined from the
best fit of the theoretical distributiai39) to the experimental
oneW(ty). The minimal value of the deviation
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A novel feature unveiled by the numerical experiment isstudying transient chaos. The original Bohr’s problem is con-
the presence of the long-living states for which the times nected to the ensemble of a different type, the scattering
ort_, but not both of them, exceed the cut-off tige The  ensemble. It can be characterized by two parameters,
existence of these states leads to the suggestion that the demely, the energieE, and E, of the particles in the in-
cay law at larget has the power behavid?(t)~t~". This  state, when the incoming particle 1 is located outside the
type of decay law is known in the theory of transient chaoshilliard. The other parameters of the stétiee impact param-
[15]. It originates from the presence of the domain of non-eter of the particle 1, the coordinates of the particle 2, and the
decaying states that has finite measure. Sticking of the trangle 6,) in the scattering ensemble are distributed uni-
jectories in the vicinity of KAM surfaces enclosing this do- formly. The distribution of the delay times for the scattering
main give rise to long-living decay state$20,21]. ensemble differs essentially from that given by E2f)). The
Alternatively, these states may indicate the possibility of theoverwhelming contribution in the range of smajl comes
capture of incoming particles in the Bohr billiard. The rigor- from the passage trajectories without any interparticle colli-
ous proof of the existence of stable states with fihiteand  sions. The mediunty range can be described by the appro-
infinite t,. (or vice versa could not be given either by nu- priate integration of the distributio(88) weighted with the
merical means or by approximate approaches. We leave thdistribution ofL in the scattering ensemble.
problem for future investigations.

In our studies we have used the ensemble of the initial
conditions, in which they are spread uniformly in the z&he
of the phase surfac®. This uniform ensemble can be char-  This research was supported in part by the program
acterized by two parameters and L; it is convenient for “Fullerenes and Atomic Clusters{Grant No. 96142
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